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ABSTRACT

We consider particular (k, `)-hook probability measures on the space of the

infinite standard Young tableaux, and calculate the probability that the

entry at the (1, 2) cell is odd. As n goes to infinity, this, approximately,

is the corresponding probability on tableaux of size n in the (k, `) hook.

In few cases of small k and ` we find exact formulas for the corresponding

numbers of such standard tableaux.

1. Introduction

Let fλ denote the number of standard tableaux of shape λ. Given two partitions

µ ⊂ λ, let fλ/µ denote the number of standard tableaux of the corresponding

skew shape λ/µ.

The motivation for the present work is the following phenomena proved

in [11], see also [6]: Consider the natural — i.e. Plancherel — probability

on standard tableaux. Then the probability that in a large random standard

tableau the (1, 2) entry is odd, is approximately 1/e, where e = 2.718 . . . . In

the present paper we study the (k, `)-hook analogue of that phenomena.

More generally, we study the probability — in the (k, `) hook — that the (i, j)

entry in a standard tableau is of a given value m. Recall that H(k, `; n) are the

partitions of n in the (k, `) hook: H(k, `; n) = {λ = (λ1, λ2, . . .) ` n | λk+1 ≤ `},
and H(k, `) =

⋃∞
n=1 H(k, `; n), called the (k, `) hook. If T is a tableau of shape
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λ ∈ H(k, `), we say that T is in the (k, `) hook. Given a tableau T and a cell

(i, j), T (i, j) denotes the (i, j) entry in T .

Thus, we study the following problem: For fixed k, `, (i, j), m and n, what is

the probability that in a random standard tableau Tλ of shape λ ∈ H(k, `; n),

Tλ(i, j) = m. This probability P(k,`)(T (i, j) = m) is the ratio a/b where b is the

total number of standard tableaux Tλ of shape λ, λ ∈ H(k, `; n), while a is the

number of such tableaux Tλ where Tλ(i, j) = m.

The problem of computing these probabilities precisely seems rather hard for

each n, and we first solve it asymptotically. Theorem 3.3 below, which is a

special case of [12, Theorem 4.1.a], can be interpreted as giving the limit such

probability, as n goes to infinity. Note that [12, Theorem 4.1] is a consequence

of the Vershik–Kerov theory of the S∞ characters [14], [16], [15]. For a brief

summary of that theory, see [12, Section 2], and also [8]. In the second part,

from Section 6 on, we compute precisely, for each n, several special cases of

these probabilities.

In this paper we mostly restrict our discussion to the case (i, j) = (1, 2).

Theorem 4.1 gives the corresponding probability in that case. Summing over

all odd m, Proposition 5.1 gives a formula for the corresponding probability

that the (1, 2) entry, in such random tableau, is odd. The hook-Schur functions

HSλ(x; y) [1] play an important role in deducing that formula.

For standard tableaux T with shapes in H(k, `; n), the probability that T (1, 2)

is odd is the ratio Sodd(k, `; n)/S(k, `; n). Here

STH(k, `; n) = {Tλ is standard of shape λ : λ ∈ H(k, `; n)},

S(k, `; n) = |STH(k, `; n)| =
∑

λ∈H(k,`;n)

fλ

and

Sodd(k, `; n) = |{Tλ ∈ STH(k, `; n) : Tλ(1, 2) is odd}| =
∑

λ∈H(k,`;n)

hλ,

where hλ is the number of standard tableaux Tλ of shape λ with Tλ(1, 2) being

odd, see [11] for a representation-theory interpretation of the numbers hλ. Thus,

Proposition 5.1 yields the limit value of Sodd(k, `; n)/S(k, `; n) as n goes to

infinity.

It is natural to look for efficient closed formulas for the combinatorial sums

S(k, `; n) and Sodd(k, `; n). By efficient closed formula we mean one that does

not involve double, or more, summations. In Sections 5–10 we deduce such
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formulas in few cases where k and ` are small. Closed formulas for the sums

S(k, 0; n) = S(0, k; n) are known for k ≤ 5, see [5], [10], [13, Ex.7.16]. Here

we give such formulas for S(1, 1; n) and for S(2, 1; n) = S(1, 2; n). We also give

such formulas for the sums Sodd(k, `; n) for (k, `) ∈ {(2, 0), (0, 2), (1, 1), (2, 1)},
see the next section for a description of these cases.

The On-Line Encyclopedia for Integer Sequences was useful in the study of

some of these cases. Thanks are also due to G. Olshansky for some very helpful

suggestions, see, in particular, Theorem 3.6.

2. The main results

In Sections 3 and 5, we study the probability P(k,`)(T (i, j) = m), see Defini-

tion 3.1 below.

Theorem 3.6 shows that the probability P(k,`)(T (i, j) = m) is the limit of a

sequence of probabilities on certain finite sets of finite tableaux.

Applying [12, Theorem 4.1.a] and some properties of hook-Schur functions [1],

we prove

Theorem 2.1 (Theorem 4.1): Let (i, j) = (1, 2), then

P(k,`)(T (1, 2) = m)

=

(
1

k + `

)m

·
[

(m − 1)

(
` + m − 2

` − 2

)

+
m−1∑

r=1

r(k + ` + 1) + `

r + 1
·
(

k

r

)

·
(

` + m − 2 − r

` − 1

)]

.

Summing over all odd numbers, it implies

Proposition 2.2 (Proposition 5.1):

P(k,`)(T (1, 2) is odd)

=

∞∑

t=1

(
1

k + `

)2t+1 [

2t

(
` + 2t − 1

` − 2

)

+
2t∑

r=1

r(k + ` + 1) + `

r + 1
·
(

k

r

)

·
(

` − 1 + 2t − r

` − 1

)]

.

This equation is applied, in Section 5, to calculate few cases of P(k,`)(T (1, 2)

is odd) with small k and `.
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In Sections 5–10, we deduce closed formulas for the combinatorial sums

S(k, `; n) and Sodd(k, `; n) for some low cases of (k, `). Consider first S(k, `; n).

Closed formulas for the sums S(k, 0; n) = S(0, k; n) are known for k ≤ 5 [13,

Exercise 7.16]. Turn now to the cases k, ` 6= 0. The hook-formula for fλ easily

implies that S(1, 1; n) = 2n−1. In Section 8, we prove an explicit formula for

the sums S(2, 1; n) = S(1, 2; n). As far as we know, so far there are no known

effective closed formulas for further cases.

Turn now to Sodd(k, `; n) which, in general, is not equal to Sodd(`, k; n).

In Section 7 we study Sodd(2, 0; n) and Sodd(0, 2; n). A closed formula for

Sodd(2, 0; n) follows by observing that Sodd(2, 0; n) = S(2, 0; n − 2). The Cata-

lan numbers Cm determine S(2, 0; n), since S(2, 0; 2m) = 2S(2, 0; 2m − 1) and

S(2, 0; 2m+1) = 2S(2, 0; 2m)−Cm. Since Sodd(2, 0; n) = S(2, 0; n−2), it follows

that Sodd(2, 0; n) is also determined by the Catalan numbers. It is well-known

that Cm = f (m,m) = f (2m). Recall the Fine numbers Fm and their relation to

the Catalan numbers: Cm = 2Fm + Fm−1, see, for example, [2]. Lemma 7.2

shows that h(2m) = Fm, the m-th Fine number. As far as we know, this gives a

new interpretation of the Fine numbers in terms of certain standard tableaux,

see Remark 7.3. Proposition 7.1 gives Sodd(0, 2; n) in terms of the Fine numbers

as follows:

Sodd(0, 2; 2m− 1) =
1

9

[(
2m + 1

m

)

+ 2Fm − 3

]

and

Sodd(0, 2; 2m) =
2

9

[(
2m + 1

m

)

+ 2Fm − 3

]

.

The details are given in Section 7 and in the Appendix.

A closed formula for the sum Sodd(1, 1; n) is given by Equation (17). A

closed formula for Sodd(2, 1; n) is given in Section 9, where we prove that

Sodd(2, 1; n + 1) = S(2, 1; n) − 1. The proof of that surprising relation in-

volves verifying a non-trivial binomial identity, see Equation (20) below. We

are thankful to D. Zeilberger for verifying that identity by the WZ method.

Together with the closed formula for S(2, 1; n) in Section 8, this yields a closed

formula for Sodd(2, 1; n). Finally, for Sodd(3, 0; n), numerical evidence suggest

the following intriguing conjecture: Sodd(3, 0; n) = S(3, 0; n−1)−S(3, 0; n−3).

It is natural to look for bijective proofs for the above identities, see Remark 10.4.

So far, only the proof of the identity Sodd(2, 0; n) = S(2, 0; n− 2) is bijective.
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3. Asymptotic probabilities in the (k, `) hook

We consider the Vershik-Kerov ergodic measures M(α; β; γ) on the set Tab

of the infinite standard tableaux, and the corresponding extended Schur func-

tions S̃ν(α; β; γ) (see [12]). Here α and β are infinite sequences of descending

non-negative real numbers α1 ≥ α2 ≥ · · · ≥ 0; β1 ≥ β2 ≥ · · · ≥ 0, satis-

fying
∑∞

i=1(αi + βi) ≤ 1, and γ = 1 −
∑∞

i=1(αi + βi). Then M(α; β; γ) is

the corresponding ergodic measure on the space Tab. Also, S̃ν(α; β; γ) are the

corresponding Vershik–Kerov extended Schur functions.

Let α1 ≥ · · · ≥ αk ≥ 0, β1 ≥ · · · ≥ β` ≥ 0, α1 + · · ·+αk +β1 + · · · + β` = 1,

αq = 0 for all q > k, βq = 0 for all q > ` and γ = 0. Then S̃ν(α; β; γ) =

HSν(α1, . . . , αk; β1, . . . , β`) is the hook (or “super”) Schur function, see [1],

[14], [16], [15].

Definition 3.1:

1. Let (i, j) be a fixed cell, let m ∈ N and let PM(α;β;γ)(T (i, j) = m)

denote the probability, with respect to the measure M(α; β; γ), that

the (i, j) entry in a random standard tableau equals m, with respect to

the measure M(α; β; γ). Further, make the choice

α1 = · · · = αk = β1 = · · · = β` =
1

k + `
.

With these α, β (and γ = 0) we define

P(k,`)(T (i, j) = m) = PM(α;β;0)(T (i, j) = m).

2. Let T be an infinite standard tableau and let shapem(T ) denote the

shape ν ` m formed by the entries 1, . . . , m in T . Similarly, when

n ≥ m and T is a finite standard tableau with |T | = n, again shapem(T )

denotes the shape ν ` m formed by the entries 1, . . . , m in T . With the

above α, β and γ = 0, define

P(k,`)(shapem(T ) = µ) = PM(α;β;0)(shapem(T ) = µ).

The definitions of the subsets

{T : T (i, j) = m}, {T : shapem(T ) = µ} ⊆ Tab

are obvious. These subsets are related by the following observation, which was

also applied in the proof of [12, Theorem 4.1.a].
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Lemma 3.2:

{T : T (i, j) = m}

=
⋃

µ∈H′(i−1,j−1;m−1)

{T : shapem−1(T ) = µ and shapem(T ) = µ+(i, j)},

a disjoint union. Here H ′(i − 1, j − 1; m − 1) are the partitions µ ∈
H(i − 1, j − 1; m − 1) such that when adding the cell (i, j) to µ, the result,

which is denoted µ+(i, j), is a partition; namely, µi−1 ≥ j and µ′
j−1 ≥ i. In

particular, for any probability measure PM on Tab,

(1) PM (T (i, j) = m)

=
∑

µ∈H′(i−1,j−1;m−1)

PM (shapem−1(T ) = µ and shapem(T ) = µ+(i, j)).

Theorem 3.3:

P(k,`)(T (i, j) = m) =

(
1

k + `

)m

·
∑

µ∈H′(i−1,j−1;m−1)

fµ · HSµ+(i,j)(1
k; 1`).

Proof. This is a special case of [12, Theorem 4.1.a]

(2) PM(α;β;γ)(T (i, j) = m) =
∑

µ∈H′(i−1,j−1;m−1)

fµ · S̃µ+(i,j)(α; β; γ).

Recall that S̃ν(α; β; γ) = HSν(α1, . . . , αk; β1, . . . , β`) and note that for any

partition ν, HSν(α1, . . . , αk; β1, . . . , β`) is homogeneous of degree |ν|. It follows

that

HSν( 1/(k + `), . . . , 1/(k + `)
︸ ︷︷ ︸

k

; 1/(k + `), . . . , 1/(k + `)
︸ ︷︷ ︸

`

)

=

(
1

k + `

)|ν|
· HSν(1k; 1`),

which completes the proof.

Theorem 3.6 below shows that the probability P(k,`)(T (i, j) = m) is the limit

of a sequence of probabilities on certain finite sets of finite tableaux.
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Definition 3.4: 1. Let STλ denote the standard tableaux of shape λ and

denote

(3) STH(k, `; n) =
⋃

λ∈H(k,`;n)

STλ so |STH(k, `; n)| =
∑

λ∈H(k,`;n)

fλ.

2. Let STλ(T (i, j) = m) = {T ∈ STλ : T (i, j) = m} and hλ
(i,j);m =

|STλ(T (i, j) = m)|. Also let

STH(k, `; n)(T (i, j) = m) =
⋃

λ∈H(k,`;n)

STλ(T (i, j) = m) so

|STH(k, `; n)(T (i, j) = m)| =
∑

λ∈H(k,`;n)

hλ
(i,j);m.(4)

3. Let

STλ(shapem(T ) = µ) = {T ∈ STλ | shapem(T ) = µ)} and

hλ
µ = |STλ(shapem(T ) = µ)|.

Also let

STH(k, `; n)(shapem(T ) = µ) =
⋃

λ∈H(k,`;n)

STλ(shapem(T ) = µ) so

|STH(k, `; n)(shapem(T ) = µ)| =
∑

λ∈H(k,`;n)

hλ
µ.(5)

Similar to Lemma 3.2, also in the case of finite tableaux we obviously have

the following

Lemma 3.5: Let m ≤ n, then

STH(k, `; n)(T (i, j) = m)

=
⋃

µ∈H′(i−1,j−1;m−1)

STH(k, `; n)(shapem−1(T )=µ and shapem(T )=µ+(i, j)),

a disjoint union.

Theorem 3.6:

(6) P(k,`)(shapem(T ) = µ) = lim
n→∞

|{STH(k, `; n)(shapem(T ) = µ)}|
|STH(k, `; n)|

and

(7) P(k,`)(T (i, j) = m) = lim
n→∞

|{STH(k, `; n)(T (i, j) = m)}|
|STH(k, `; n)| .
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Proof. (G. Olshanski) Note first that by (1) and by Lemma 3.5, (6) implies (7),

so we prove (6). Let P (n) denote the uniform measure on the finite set

STH(k, `; n), so that the weights of all tableaux in STH(k, `; n) are the same

and equal to |STH(k, `; n)|−1. The measure P (n) induces a probability mea-

sure, say P̄ (n), on the set of Young diagrams λ with n cells, contained in the

(k, `)-hook: the weight P̄ (n)(λ) is proportional to fλ.

Let T (n) denote a random tableau from STH(k, `; n). Let m < n. The

probability (with respect to P (n)) that shapem(T (n)) coincides with a given

Young diagram µ with m cells is equal to

P (n)(shapem(T (n)) = µ) = |STH(k, `; n)|−1
∑

λ∈H(k,`;n)

fµfλ/µ.

The above probability can be written as

(8) P (n)(shapem(T (n)) = µ) =
∑

λ∈H(k,`;n)

fµfλ/µ

fλ
· P̄ (n)(λ).

Next, using formula (0.3) of [9], we express the ratio fλ/µ

fλ through the Frobenius–

Schur function Fsµ evaluated at the modified Frobenius coordinates (x, y) =

(x(λ), y(λ)) of λ (in our situation, the number of (non-zero) coordinates is

d ≤ max(k, `)):

(9)
fλ/µ

fλ
=

Fsµ(x, y)

n(n − 1) · · · (n − m + 1)
= sµ( 1

nx, 1
ny) + O( 1

n ).

Here sµ is the hook-Schur function sµ = HSµ.

We now show that as n → ∞, the measure P̄ (n), viewed as a measure on

the normalized modified Frobenius coordinates ( 1
nx, 1

ny), concentrates near the

point (α, β) where

α1 = · · · = αk = β1 = · · · = β` =
1

k + `
(and αk+1 = β`+1 = 0).

Together with (8) and (9) this implies that (8) tends to fµsµ(α, β), that is, to

the probability corresponding to the measure Mα,β. This, in turn, implies the

relation (6).

Finally, we prove the above statement about P̄ (n). Given λ ∈ H(k, `; n),

write

λi =
n

k + `
+ ci(λ)

√
n, 1 ≤ i ≤ k, and λ′

j =
n

k + `
+ c′j(λ)

√
n, 1 ≤ j ≤ `.
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Let 0 < a and denote

H(k, `; n; a) = {λ ∈ H(k, `; n) : |ci(λ)|, |c′j(λ)| < a},

with corresponding

STH(k, `; n; a) = {T ∈ STH(k, `; n) : shape(T ) ∈ H(k, `; n; a)}

and

STH(k, `; n; a)(T (i, j) = m)

= {T ∈ STH(k, `; n)(T (i, j) = m) : shape(T ) ∈ H(k, `; n; a)}

Note that for a large n, if λ ∈ H(k, `; n; a) then λ1, . . . , λk, λ′
1, . . . , λ

′
` ≈

n/(k + `), namely, λ is nearly (k, `) rectangular. Now, it follows from [1, Section

7] that given 0 < ε, there is 0 < a such that when n → ∞,

1 − ε <
|STH(k, `; n; a)|
|STH(k, `; n)| < 1 namely,

|STH(k, `; n; a)|
|STH(k, `; n)| ≈ 1.

Of course, as ε becomes smaller, we need to take larger a. Thus, when

n → ∞,

|{STH(k, `; n)(T (i, j) = m)}|
|STH(k, `; n)| ≈ |{STH(k, `; n; a)(T (i, j) = m)}|

|STH(k, `; n; a)| .

Finally, for fixed a and with n → ∞, if λ ∈ H(k, `; n, a), then λ1, . . . , λk,

λ1, . . . , λ` ≈ n/(k + `) as was claimed. The proof is now complete.

Remark 3.7: We just saw that for large n, most tableaux in STH(k, `; n) have

shapes λ ∈ H(k, `; n) where λ1, . . . , λk and λ′
1, . . . , λ

′
` are all close to n/(k + `).

Thus, for such “typical” λ, hλ/fλ is close to P(k,`)(T (i, j) = m), namely,

hλ
(i,j);m ≈ P(k,`)(T (i, j) = m) · fλ.(10)

4. Some special cases

In the rest of this paper we calculate the probabilities P(k,`)(T (i, j) = m) as the

limit n → ∞ of the finite probabilities P (n).
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4.1. The case (i, j) = (1, 2). In this paper we restrict our discussion to the

case (i, j) = (1, 2). By conjugation, this includes also the case (i, j) = (2, 1).

As a corollary of Theorem 3.3 we have the following formula.

Theorem 4.1: Let (i, j) = (1, 2), then

P(k,`)(T (1, 2) = m)(11)

=

(
1

k + `

)m

· HS(2,1m−2)(1
k; 1`)

=

(
1

k + `

)m

·
[

(m − 1)

(
` + m − 2

` − 2

)

+

m−1∑

r=1

r(k + ` + 1) + `

r + 1
·
(

k

r

)

·
(

` + m − 2 − r

` − 1

)]

.

Before proving the theorem we observe the following corollary.

Corollary 4.2: 1.

P(k,0)(T (1, 2) = m) =
1

km
· (m − 1) ·

(
k + 1

m

)

.

2.

P(0,`)(T (1, 2) = m) =
1

`m
· (m − 1) ·

(
` + m − 2

` − 2

)

.

Proof. Note that when ` = 0 (or even ` = 1), the term (m − 1)
(
`+m−2

`−2

)
in (11)

is zero. Also when ` = 0, the term
(
k
r

)
·
(
`+m−2−r

`−1

)
is zero unless r = m − 1,

at which case it is 1. This implies part 1. If k = 0 then
(
k
r

)
= 0 (since r ≥ 1),

which implies part 2.

A simpler direct proof of this corollary is given below, see Remark 4.4.

We now prove Theorem 4.1.

Proof. To prove the theorem, note first that H ′(0, 1; m − 1) has the single

element µ = (1m−1), with fµ = 1 and µ+(1, 2) = (2, 1m−2). By Theorem 3.3

this implies the first equality

P(k,`)(T (1, 2) = m) =

(
1

k + `

)m

· HS(2,1m−2)(1k; 1`).

The proof of Theorem 4.1 now follows from the following lemma on Hook–Schur

functions.
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Lemma 4.3:

HS(2,1m−2)(1
k, 1`)

= (m − 1)

(
` + m − 2

` − 2

)

+

m−1∑

r=1

r(k + ` + 1) + `

r + 1
·
(

k

r

)

·
(

` + m − 2 − r

` − 1

)

.

Proof. By [1],

HSλ(x1, . . . , xk; y1, . . . , y`) =
∑

φ≤µ≤λ

Sµ(x1, . . . , xk) · S(λ/µ)′(y1, . . . , y`),

and here λ = (2, 1m−2). Let φ < µ < (2, 1m−2), then either µ = (1r) with

0 ≤ r ≤ m − 1, or µ = (2, 1u) with 0 ≤ u ≤ m − 2.

µ = (1r). If r = 0, then µ = φ, ((2, 1m−2)/φ)′ = (2, 1m−2)′ = (m − 1, 1),

and we have the corresponding summand

S0(1
k) · S(m−1,1)(1

`) = 1 · S(m−1,1)(1
`) = 2t

(
` + m − 2

` − 2

)

(see [7, page 45, Example 4], for a formula for Sλ(1k)). When 1 ≤ r ≤ m − 1,

(2, 1m−2)/(1r) has two components, (1) and (1m−1−r), so ((2, 1m−2)/(1r))′ has

the components, (1) and (m − 1 − r), which yield the summand

S(1r)(x1, . . . , xk) · S(1)(y1, . . . , y`) · S(m−1−r)(y1, . . . , y`).

Substitute all xi = yj = 1. Since for any q, Sq(1
`) =

(
`+q−1

`−1

)
, and since

S(1r)(1
k) =

(
k
r

)
, the corresponding summand for 1 ≤ r ≤ m − 1 is

(
k

r

)

· ` ·
(

` − 1 + m − 1 − r

` − 1

)

.

µ = (2, 1u) then (2, 1m−2)/(2, 1u) = (1m−2−u), which yields the summand

S(2,1u)(x1, . . . , xk) · S(m−2−u)(y1, . . . , y`),

and after substituting all xi = yj = 1 it contributes

S(2,1u)(1
k) · S(m−2−u)(1

`) = (u + 1)

(
k + 1

u + 2

)

·
(

` + m − 3 − u

` − 1

)

.
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Deduce that

HS(2,1m−2)(1
k, 1`)

=(m − 1)

(
` + m − 2

` − 2

)

+

m−1∑

r=1

(
k

r

)

· ` ·
(

` + m − 2 − r

` − 1

)

+

m−2∑

u=0

(u + 1) ·
(

k + 1

u + 2

)

·
(

` + m − 3 − u

` − 1

)

=(m − 1)

(
` + m − 2

` − 2

)

+

m−1∑

r=1

(
k

r

)

· ` ·
(

` + m − 2 − r

` − 1

)

+

m−1∑

r=1

r ·
(

k + 1

r + 1

)

·
(

` + m − 2 − r

` − 1

)

=(m − 1)

(
` + m − 2

` − 2

)

+

m−1∑

r=1

r(k + ` + 1) + `

r + 1
·
(

k

r

)

·
(

` + m − 2 − r

` − 1

)

.

Remark 4.4: A direct proof of part 1 of Corollary 4.2 follows by similar (and

simpler) arguments, from the equality

S(2,1m−2)( 1, . . . , 1
︸ ︷︷ ︸

k

) = (m − 1)

(
k + 1

m

)

.

Similarly, a direct proof of part 2 of Corollary 4.2 follows from

S(2t,1)( 1, . . . , 1
︸ ︷︷ ︸

`

) =
(` − 1) · ` · (` + 1) · · · (` + 2t − 1)

(2t − 1)! · (2t + 1)
= 2t

(
` + 2t − 1

` − 2

)

.

5. The probability that T (1, 2) is odd

We study here the probability P(k,`)(T (1, 2) is odd). Note that if T is a standard

tableau of shape λ and λ1 ≥ 2, then T (1, 2) ≥ 2. Thus

P(k,`)(T (1, 2) is odd) =

∞∑

t=1

P(k,`)(T (1, 2) = 2t + 1),

and Theorem 4.1 implies the following formula (12) for calculating P(k,`)(T (1, 2)

is odd).



Vol. 169, 2009 PROBABILITIES IN THE (k, `) HOOK 73

Proposition 5.1:

P(k,`)(T (1, 2) is odd)(12)

=
∞∑

t=1

(
1

k + `

)2t+1 [

2t

(
` + 2t − 1

` − 2

)

+
2t∑

r=1

r(k + ` + 1) + `

r + 1
·
(

k

r

)

·
(

` − 1 + 2t − r

` − 1

)]

.

In particular

(13) P(k,0)(T (1, 2) is odd) =

[k/2]
∑

t=1

1

k2t+1
· 2t

(
k + 1

2t + 1

)

and

(14) P(0,`)(T (1, 2) is odd) =

∞∑

t=1

1

`2t+1
· 2t

(
` + 2t − 1

` − 2

)

.

Definition 5.2: Let λ ` n. We denote by hλ the number of standard tableaux

of shape λ with the (1, 2)-entry being odd. Thus hλ =
∑

t≥1 hλ
(1,2);2t+1, see

Definition 3.4.

Remark 5.3: It follows from (10) that hλ/fλ is close to P(k,`)(T (1, 2) is odd),

namely

(15) hλ ≈ P(k,`)(T (1, 2) is ddd) · fλ,

provided λ is typical in the (k, `) hook.

5.1. Some cases of ` = 0.

Example 5.4: k = 2: Here the summands of (13) with t > 1 equal 0, so t = 1

and P(2,0)(T (1, 2) is odd) = 1
23 · 1·2·3

1·3 = 1
4 .

k = 3: Again t = 1 and P(3,0)(T (1, 2) is odd) = 8/27.

Similarly P(4,0)(T (1, 2) is odd) = 81/44, P(5,0)(T (1, 2) is odd) = 1024/55 and

P(6,0)(T (1, 2) is odd) = 15625/66 = 2.986−1.

As k becomes larger, P(k,0)(T (1, 2) is odd) tends to e−1 = 2.7182818−1.

5.2. Some cases of k = 0.
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Example 5.5: ` = 2. By (14)

P(0,2)(T (1, 2) is odd) =
∞∑

t=1

1

22t+1
· (2t + 1)!

(2t − 1)! · (2t + 1)
=

∞∑

t=1

t

4t
=

4

9

= 0.4444444 . . . .

(The last sum is evaluated as follows: let f(x) =
∑∞

t=1 xt/4t = x/(4 − x). Now

differentiate f(x) and evaluate f ′(x) at x = 1: f ′(1) = 4/9.)

` = 3. Similarly,

P(0,3)(T (1, 2) is odd) =
∞∑

t=1

1

32t+1
· (2t + 2)!

(2t − 1)! · (2t + 1)
=

4

3
·

∞∑

t=1

t(t + 1)

9t
=

27

64

= 0.421875 . . . .

(Define f(x) = 4
3

∑

t≥1
xt+1

32t = 4
3 · x2

9−x , then evaluate the second derivative of

f(x) at x = 1.)

` = 4. By similar arguments, P(0,4)(T (1, 2) is odd) = 0.4096

5.3. Some (k, `) cases. Here we apply (12).

Example 5.6: (k, `) = (1, 1). Here

P(1,1)(T (1, 2) is odd) =
∑

t≥1

(
1

2

)2t+1

· 4

2
=

∑

t≥1

(
1

4

)t

=
1

3
.

(k, `) = (2, 1). In (12) r = 1, 2 so

P(2,1)(T (1, 2) is odd) =
∑

t≥1

(
1

3

)2t+1

·
(

5

2

(
2

1

)

+
9

3

(
2

2

))

=
1

3
.

(k, `) = (1, 2). Here

P(1,2)(T (1, 2) is odd) =
8

3

∑

t≥1

t

9t
=

3

8
.

(k, `) = (3, 1). In (12), if t = 1, then r = 1, 2, and if t ≥ 2 then r = 1, 2, 3.

By similar calculations we obtain P(3,1)(T (1, 2) is odd) = 27/80.

(k, `) = (2, 2). In (12), r = 1, 2, so similar calculations lead to P(2,2)(T (1, 2)

is odd) = 9/25, which already is rather close to 1/e = 0.36788 . . . .

Remark 5.7: Fix 0 ≤ r < d ∈ N. In a similar way it is possible to apply

Theorem 4.1 and calculate the probabilities P(k,`)(T (1, 2) ≡ r (mod d)). Of
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course, applying Theorem 3.3, one can calculate such prpbabilities at other

cells (i, j). In the following example Corollary 4.2 was applied .

P(0,3)(T (1, 2) ≡ 0 (mod 3)) = 0.348657,

P(0,3)(T (1, 2) ≡ 1 (mod 3)) = 0.208921,

P(0,3)(T (1, 2) ≡ 2 (mod 3)) = 0.442421

while

P(3,0)(T (1, 2) ≡ 0 (mod 3)) = P(3,0)(T (1, 2) = 3) = 8/27 = 0.296296,

P(3,0)(T (1, 2) ≡ 1 (mod 3)) = P(3,0)(T (1, 2) = 4) = 1/27 = 0.037037,

P(3,0)(T (1, 2) ≡ 2 (mod 3)) = P(3,0)(T (1, 2) = 2) = 2/3 = 0.66667.

Compare with the corresponding values for the Plancherel measure

M(0; 0; 1), see [12, (8.4.4)].

PM(0;0;1))(T (1, 2) ≡ 0 (mod 3)) = 0.3403

PM(0;0;1))(T (1, 2) ≡ 1 (mod 3)) = 0.126193

PM(0;0;1))(T (1, 2) ≡ 2 (mod 3)) = 0.533507

6. Precise probabilities, the cases (2, 0) and (1, 1)

Recall That

S(k, `; n) := |STH(k, `; n)|,
Sodd(k, `; n) := |{Tλ ∈ STH(k, `; n) | Tλ(1, 2) is odd}|,

and that

P(k,`)(T (1, 2) is odd) = lim
n→∞

Sodd(k, `; n)

S(k, `; n)
.

For few pairs (k, `) with small k and ` we now calculate Sodd(k, `; n) as

well as the ratio Sodd(k, `; n)/S(k, `; n). By sending n to infinity, this yields

P(k,`)(T (1, 2) is odd).

Note that for k ≤ 5 there are explicit formulas for S(k, 0; n), see [4], [5], [13,

page 493]. Below we give explicit formulas for Sodd(k, `; n) in the cases (k, `) ∈
{(2, 0), (1, 1), (2, 1)}. We also conjecture an explicit formula for Sodd(3, 0; n).
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Some of these formulas are of interest on their own. Moreover, it should be

interesting to find bijective proofs for some of these formulas.

6.1. The case (2, 0).

Proposition 6.1: Sodd(2, 0; n) = S(2, 0; n− 2).

Proof. Let λ = (λ1, λ2) ∈ H(2, 0; n), λ1 ≥ 2, Tλ standard of shape λ, with

Tλ(1, 2) odd. Then λ2 ≥ 1, that entry must be 3, and its (2, 1)-entry must be

2. The number of such tableaux is fλ\(2,1) = the number of standard tableaux

of skew shape λ \ (2, 1). Compare λ \ (2, 1) with the partition (λ1 − 1, λ2 − 1).

Assuming that the (1, 1)-entry in (λ1 − 1, λ2 − 1) is filled, say, with 0, we see

that fλ\(2,1) = f (λ1−1,λ2−1). Thus

Sodd(2, 0; n) =
∑

λ∈H(2,0;n)
λ1≥2, λ2≥1

f (λ1−1,λ2−1)

=
∑

µ∈H(2,0;n−2)

fµ = S(2, 0; n− 2).

Note that the above proof is bijective, as it corresponds bijectively to Tλ ∈
{Tλ ∈ STH(k, `; n) : Tλ(1, 2) is odd} with Tλ̄ ∈ STH(2, 0; n − 2), where for

λ = (λ1, λ2), λ̄ = (λ1 − 1, λ2 − 1).

As usual, bαc denotes the integer part of α ∈ R. Note also that

(16) S(2, 0; n) =

(
n

bn
2 c

)

hence Sodd(2, 0; n) =

(
n − 2

bn−2
2 c

)

,

see [10], [13, page 493]. Since

lim
n→∞

(
n − 2

bn−2
2 c

)/(
n

bn
2 c

)

= 1/4,

it follows that P(2,0)(T (1, 2) is odd) = 1/4, which coinsides with the case k = 2

of Example 5.4.

6.2. The case (k, `) = (1, 1).

Lemma 6.2: (1)

S(1, 1; n) =
∑

λ∈H(1,1;n)

fλ = 2n−1.
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(2)

(17) Sodd(1, 1; n) =
1

3

[

2n−1 − 3 − (−1)n+1

2

]

.

It easily follows that

a) Sodd(1, 1; 2m) = 2Sodd(1, 1; 2m− 1), and

b) Sodd(1, 1; 2m + 1) = 4Sodd(1, 1; 2m− 1) + 1.

Proof. Part 1 is well-known, and we prove part 2.

Let λ ∈ H(1, 1; n), say λ = (n−q, 1q). Assume Tλ is standard with Tλ(1, 2) =

2t + 1 its (1, 2) entry. Then the first 2t entries in the first column of Tλ are

1, 2, . . . , 2t so necessarily 2t − 1 ≤ q. Such Tλ is then completely determined

if we choose q − (2t − 1) elements for the remaining entries of that column;

from the n − (2t + 1) elements 2t + 2, 2t + 3, . . . , n. The number of such Tλ’s

is
(n−(2t+1)

q−(2t−1)

)
=

(
n−2t−1
n−q−2

)
. Thus 1 ≤ q ≤ n − 2 and also 2 ≤ 2t ≤ q + 1, so

1 ≤ t ≤ b(q + 1)/2c. Summing on all such t’s implies that the number of

tableaux Tλ with λ = (n − q, 1q) and Tλ(1, 2) is odd, is
∑b(q+1)/2c

t=1

(
n−2t−1
n−q−2

)
.

Summing on 1 ≤ q ≤ n−2, we obtain that the total number of these tableaux

is

Sodd(1, 1; n) =
n−2∑

q=1

b(q+1)/2c
∑

t=1

(
n − 2t − 1

n − q − 2

)

=
∑

q≥1

∑

t≥1

(
n − 2t − 1

n − q − 2

)

=
∑

t≥1

∑

q≥1

(
n − 2t − 1

n − q − 2

)

=

b(n−1)/2c
∑

t=1

(
∑

i≥1

(
n − 2t − 1

i

))

=

b(n−1)/2c
∑

t=1

2n−2t−1.

By considering the two cases n even and n odd, it easily follows that this last

sum equals the r.h.s. of (17), and the proof follows.

This clearly implies that

lim
n→∞

Sodd(1, 1; n)/S(1, 1; n) = 1/3,

which co insides with the case (k, `) = (1, 1) of Example 5.6.
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7. The case (0, 2) and Catalan and Fine numbers

Following Remark 5.3, we first compare f (2m) with h(2m). According to Exam-

ple 5.5, we should have

(18) h(2m) ≈ 4/9 · f (2m).

While f (2m) = f (m,m) is the m-th Catalan number Cm = 1
m+1

(
2m
m

)
, it is shown

in Lemma 7.2 below that h(2m) =
∑bk/2c

t=1 2t (2k−2t−1)!
k!(k−2t)! , which is the m-th Fine

number Fm, namely, h(2m) = Fm, see, for example, [2]. The Fine numbers

satisfy the equation Cm = 2 · Fm + Fm−1, and their asymptotics is Fm ∼
4m+1

9·√π·m·√m
. The asymptotics of Cm (easily obtained by the Stirling formula)

then imply that, indeed,

lim
m→∞

h(2m)/f (2m) = lim
m→∞

Fm/Cm = 4/9,

which agrees with (18).

Turn now to the sums Sodd(0, 2; n). The following recurrence can be proved

for Sodd(0, 2; n) :

Proposition 7.1: 1. Sodd(0, 2; 3) = 1, and for n ≥ 4, S(0, 2; n) satisfies

the recurrences.

2. Sodd(0, 2; 2m + 1) = 4Sodd(0, 2; 2m− 1) + 1 − Fm, and

Sodd(0, 2; 2m) = 2Sodd(0, 2; 2m− 1).

3. Also, Sodd(0, 2; 2m− 1) is given explicitly as follows:

Sodd(0, 2; 2m− 1) =
1

9

[(
2m + 1

m

)

+ 2 · Fm − 3

]

and

Sodd(0, 2; 2m) =
2

9

[(
2m + 1

m

)

+ 2 · Fm − 3

]

.

Some details are given in the Appendix. Here we prove

Lemma 7.2: h(2m) = Fm, the m-th Fine number.

Proof. Let T = T(2m) be a standard tableau of shape (2m) and with T (1, 2) =

2t + 1. Then the first 2t entries of its first column are 1, . . . , 2t. Delete the cells

containing 1, . . . , 2t + 1 and obtain a standard tableau T− of a certain skew

shape. Conjugate that skew shape, then rotate it by 180◦, and finally reverse

the order among its entries, so it becomes standard. It follows that the number



Vol. 169, 2009 PROBABILITIES IN THE (k, `) HOOK 79

of such T ’s is f (2m−2t,2t−1) = f (m−1,m−2t). Summing on 1 ≤ t ≤ [m/2] and

applying, say, the hook-formula for calculating fλ, it follows that

(19) h(2m) =

bm/2c
∑

t=1

2t
(2m− 2t − 1)!

m!(m − 2t)!
=

∑

t

t

m − t
·
(

3m − 2t

m

)

.

The proof now follows since it is known that the r.h.s = Fm, see, for example,

[2, page 251].

Remark 7.3: It is known that Fm is the number of standard tableaux of shape

(m, m) without a column of the form

a

a′

where a′ = a + 1. Thus, there is a bijection between such tableaux and the

tableaux T of shape (2m) with T (1, 2) odd [2]. It should be interesting to find

an explicit such bijection.

8. A closed formula for S(2, 1; n)

Theorem 8.1: Recall that S(2, 1; n) =
∑

λ∈H(2,1;n) fλ and let n ≥ 2, then

∑

λ∈H(2,1;n)

fλ

=
∑

λ∈H(1,2;n)

fλ

=
1

4

( n−1∑

r=0

( n − r

bn−r
2 c

)(
n

r

)

+

bn
2 c−1
∑

k=1

n!

k! · (k + 1)! · (n − 2k − 2)! · (n − k − 1) · (n − k)

)

+ 1.

The proof applies Pieri’s rule for the “outer” product χµ⊗̂χ(1n), see [7,

I,(5.16),(5.17)]. We shall need the following three lemmas.
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Lemma 8.2: Let η(n) be the following Sn-character

η(n) =

n−1∑

r=0

(
∑

µ∈H(2,0;n−r)

χµ

)

⊗̂χ(1r), then η(n) =
∑

λ∈H(2,1;n)

b(λ)χλ,

where b((n)) = b((1n)) = 2, b((k+1, k+1, 1n−2k−2)) = 3 if λ1 = λ2 = k+1 ≥ 2,

namely, if 1 ≤ k ≤ bn
2 c − 1, and b(λ) = 4 in all other cases.

Proof. By Pieri’s rule it clearly follows that η(n) is supported on the (2, 1) hook.

Given λ ∈ H(2, 1; n), calculate the number of partitions µ ∈ H(2, 0) (|µ| ≤ n)

such that χλ appears in χµ⊗̂χ(1r) (of course, with multiplicity 1).

1. The case λ1 > λ2 ≥ 1. There are four possible µ’s here:

(λ1 − 1, λ2 − 1), (λ1 − 1, λ2), (λ1, λ2 − 1), and (λ1, λ2).

2. The case λ1 = λ2 ≥ 2. There are three possible µ’s in this case:

(λ1 − 1, λ2 − 1), (λ1, λ2 − 1), and (λ1, λ2).

3. The case λ1 = 1, hence λ = (1n). The two possible µ’s in this case are:

(1) and (12).

The proof of the lemma is complete.

Lemma 8.3: The degree of the character η(n) in Lemma 8.2 is the following

sum s1(n):

s1(n) = deg

( n−1∑

r=0

(
∑

µ∈H(2,0;n)

χµ

)

⊗̂χ(1r)

)

=

n−1∑

r=0

(
n − r

bn−r
2 c

) (n

r

)

.

Proof. First, it is well-known that for any two partitions µ and ν,

deg(χµ⊗̂χν) = deg(χµ) deg(χν)

( |µ| + |ν|
|µ|

)

.

The second fact used in the proof is that

∑

µ∈H(2,0;m)

fµ =

(
m

bm
2 c

)

,

[10, Section 4], [13, Exercise 7.16]. The proof of the lemma now easily

follows.

The hook formula for the fλ’s easily implies the following lemma.
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Lemma 8.4: Let

s2(n) :=

bn
2 c−1
∑

k=1

n!

k! · (k + 1)! · (n − 2k − 2)! · (n − k − 1) · (n − k)

be the second sum in Theorem 8.1, and let ρ(n) denote the following Sn-

character:

ρ(n) =

bn
2 c−1
∑

k=1

χ(k+1,k+1,1(n−2k−2)).

Then deg(ρ(n)) = s2(n).

The proof of Theorem 8.1.

Proof. Form the Sn–character η(n) + ρ(n) + 2χ(n) + 2χ(1n) . By Lemma 8.2,

η(n) + ρ(n) + 2χ(n) + 2χ(1n) = 4
∑

λ∈H(2,1;n)

χλ.

The proof now follows from the previous lemmas by taking the degrees of these

characters.

9. A closed formula for Sodd(2, 1; n)

Lemma 9.1: Let n ≥ 3, then

Sodd(2, 1; n) =

n−3∑

q=0

(
n − q − 2

b(n − q − 2)/2c

) b(q+2)/2c
∑

t=1

(
n − 2t − 1

n − q − 3

)

.

Proof. Let λ ∈ H(2, 1; n), Tλ standard with Tλ(1, 2) odd, so λ1 ≥ 2, λ2 ≥ 1.

Denote λ = (λ1, λ2, 1
q) (so (λ1 + λ2 = n − q), and let Tλ(1, 2) = 2t + 1, where

t ≥ 1. Then 1, 2, . . . , 2t occupy the first 2t entries of the first column, leaving

q + 2 − 2t entries free. Choose these q + 2 − 2t entries from the remaining

n− (2t + 1) numbers 2t + 2, . . . , n to fill the first column (in a unique standard

way). This can be done in
(
n−(2t+1)
q+2−2t

)
=

(
n−2t−1
n−q−3

)
ways.

The remaining entries occupy the skew partition (λ1 − 1, λ2 − 1)/(1) and

form a standard skew tableau. Filling the missing top-left-cell of (λ1 − 1,

λ2−1)/(1) with 0 implies there are f (λ1−1,λ2−1) such standard fillings. Since µ =

(λ1 − 1, λ2 − 1) ` n − q − 2 is an arbitrary two parts partition of n − q − 2,

by (16) the number of such standard tableaux Tµ is
(

n−q−2
b(n−q−2)/2c

)
. Thus, with
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such 0 ≤ q ≤ n − 3 and 3 ≤ 2t + 1 ≤ q + 3 (so 1 ≤ t ≤ b(q + 2)/2c), the total

number of such tableaux is

n−3∑

q=0

b(q+2)/2c
∑

t=1

(
n − q − 2

b(n − q − 2)/2c

)(
n − 2t − 1

n − q − 3

)

=

n−3∑

q=0

(
n − q − 2

b(n − q − 2)/2c

) b(q+2)/2c
∑

t=1

(
n − 2t − 1

n − q − 3

)

.

We have the following surprising identity.

Proposition 9.2: S(2, 1; n) = 1 + Sodd(2, 1; n + 1), namely

∑

λ∈H(2,1;n)

fλ = 1 +
∑

λ∈H(2,1;n+1)

hλ

By Theorem 8.1 and by Lemma 9.1, this identity is equivalent to the following

binomial identity

(20)
1

4

( n−1∑

r=0

(
n − r

bn−r
2 c

)(n

r

)

+

bn
2 c−1
∑

k=1

n!

k! · (k + 1)! · (n − 2k − 2)! · (n − k − 1) · (n − k)

)

=

n−2∑

q=0

(
n − q − 1

[(n − q − 1)/2]

) b(q+2)/2c
∑

j=1

(
n − 2j

n − q − 2

)

.

Proof. We are thankful to D. Zeilberger who verified this identity by the WZ

method.

Remark 9.3: If we add 1 to both sides of (20), then Theorem 8.1 gives a combi-

natorial interpretation to the l.h.s. while Lemma 9.1 gives such an interpretation

to the r.h.s. This probably hints at a bijective proof of Proposition 9.2.

10. The cases Sodd(3, 0; n) and Sodd(1, 2; n)

We begin by recalling the following formula, see [10], [13]:
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S(3, 0; n) =

bn/2c
∑

k=0

n!

k!(k + 1)!(n − 2k)!
.

By direct calculations, for n = 3, 4, . . . , 14 we have:

Sodd(3, 0; n) = 1, 3, 7, 17, 42, 106, 272, 708, 1865, 4963, 13323, 36037

S(3, 0; n) = 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634

This indicates of the following

Conjecture 10.1: Sodd(3, 0; n) = S(3, 0; n− 1) − S(3, 0; n− 3).

It should be interesting to find a bijective proof to that conjecture, namely, a

bijection between the corresponding tableaux. Note that since S3(n) ∼ a·nb ·3n,

where a, b are constants, the conjecture would imply that

lim
n→∞

Sodd(3, 0; n)

S(3, 0; n)
=

3n−1 − 3n−3

3n
=

8

27
,

agreeing with the case k = 3 of Example 5.4.

Remark 10.2: Conjecture 10.1 has just been proved by Shalosh B. Ekhad and

D. Zeilberger [3].

In the case Sodd(1, 2; n), by direct calculations for Sodd(1, 2; n) and by Theo-

rem 8.1 we have the following values (n = 1, 2, 3, . . .)

Sodd(1, 2; n) : 0, 0, 1, 3, 9, 25, 71, 201, 573, 1639, 4708, 13568, 39218, 113646

S(1, 2; n) : 1, 2, 4, 10, 26, 71, 197, 554, 1570, 4477, 12827, 36895, 106471, 308114

Example 10.3: Let λ = (m, m, m) and show that as m goes to infinity, hλ/fλ

indeed goes to 8/27. Let T be a standard tableau of shape λ = (m, m, m) and

with T (1, 2) odd. Then necessarily T (1, 2) = 3 and T (2, 1) = 2. Rotating the

skew tableau T/(2, 1) by 180◦, it follows that h(m,m,m) = f (m,m−1,m−2) by, say,

the hook-formula,

h(m,m,m)

f (m,m,m)
= 8

(m − 1)m(m + 1)

(3m− 2)(3m − 1)3m
−→ 8

27
.

By similar arguments

h(3m)

f (3m)
= 4

bm/2c
∑

t=1

t(t + 1)
(m − 2t + 1)(m − 2t + 2) · · · (m + 1)

(3m − 2t)(3m − 2t + 1) · · · (3m)
.
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Remark 3.7 and the case ` = 3 of Example 5.5 imply that as m → ∞,

h(3m)/f (3m) −→ 27/64,

and therefore

4

[m/2]
∑

t=1

t(t + 1)
(m − 2t + 1)(m − 2t + 2) · · · (m + 1)

(3m − 2t)(3m − 2t + 1) · · · (3m)
−→ 27

64
.

Remark 10.4: We believe there should be bijective proofs to several of the cases

discussed in this paper.

1. The Fine numbers count

a) The number of standard tableaux T of shape (m, m) with T (1, 2)

odd, and

b) The number of standard tableaux T of shape (m, m) without a

column of the form

a

a′

where a′ = a + 1.

Give a bijection between these tableaux.

2. By Proposition 9.2, S(2, 1; n) = Sodd(2, 1; n) + 1. Find a bijection be-

tween the corresponding sets of standard tableaux.

3. Find a bijective proof for Conjecture 10.1.

11. Appendix: Sodd(0, 2; n) re-visited

11.1. Catalan and Fine triangles. We begin with the following observation

(see Definition 5.2).

(1) h(2,1n−2) = h(n−1,1)′ = bn−1
2 c, n ≥ 3, and

(2) If λ2 ≥ 2, then h(λ1,λ2)
′

= h(λ1−1,λ2)′ +h(λ1,λ2−1)′ . Here h(λ1−1,λ2)′ = 0

if λ1 = λ2.

This leads to the following infinite triangle: construct the part of the Young

graph of the proper-two-parts partitions:
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(2, 1)

↙ ↘
(2, 2) (3, 1)

↓ ↙ ↓
(3, 2) (4, 1)

↙ ↘ ↙ ↘
(3, 3) (4, 2) (5, 1)

↓ ↙ ↓ ↙ ↓
(4, 3) (5, 2) (6, 1)

↙ ↘ ↙ ↘ ↙ ↘
(4, 4) (5, 3) (6, 2) (7, 1)

. . . . .

The proper two parts partitions.

where (λ1, λ2) is connected with (λ1 + 1, λ2) and with (λ1, λ2 + 1) (provided

λ1 ≥ λ2 + 1).

With each partition λ, write its corresponding hλ′

(the partitions (n) are

deleted since h(n)′ = h(1n) = 0). We obtain the following “Fine-triangle”

1

↙ ↘
1 1

↓ ↙ ↓
2 2

↙ ↘ ↙ ↘
2 4 2

↓ ↙ ↓ ↙ ↓
6 6 3

↙ ↘ ↙ ↘ ↙ ↘
6 12 9 3

. . . . .

A Fine triangle.

Note that the rightmost numbers are the multiplicities h(n−1,1)′ = bn−1
2 c,

but all other numbers are obtained by adding the incoming multiplicities.

Clearly, the rightmost numbers are the natural numbers repeated twice:

1, 1, 2, 2, 3, 3, 4, 4, . . . . The leftmost numbers also repeat twice. After delet-

ing repetitions, obtain the sequence 1, 2, 6, 18, 57, 186, . . . which are the Fine
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numbers. The row-sums in the Fine triangle are the numbers Sodd(0, 2; n) :

1, 2, 4, 8, 15, 30, . . .. From the above Fine-triangle it follows that

1. Sodd(0, 2; 2m) = 2Sodd(0, 2; 2m− 1), and

2. Sodd(0, 2; 2m + 1) = 2Sodd(0, 2; 2m) + 1 − Fm,

see Proposition 7.1. Note that in the Fine triangle, the multiplicities on the

q-th diagonal from North–East to South–West are the numbers h(n,q−1)′ .

11.2. A Catalan triangle. Now write all the two-parts partitions, starting

with (1):

(1)

↙ ↘
(12) (2)

↓ ↙ ↓
(2, 1) (3)

↙ ↘ ↙ ↘
(2, 2) (3, 1) (4)

↓ ↙ ↓ ↙ ↓
(3, 2) (4, 1) (5)

↙ ↘ ↙ ↘ ↙ ↘
(3, 3) (4, 2) (5, 1) (6)

. . . . .

The two parts partitions.

Ignoring multiplicities, this is the same “bullet” graph as in the Fine-case:

•
↙ ↘

• •
↓ ↙ ↓
• •

↙ ↘ ↙ ↘
• • •
↓ ↙ ↓ ↙ ↓
• • •

↙ ↘ ↙ ↘ ↙ ↘
• • • •

. . . . .

The Bullet graph.



Vol. 169, 2009 PROBABILITIES IN THE (k, `) HOOK 87

At each partition λ now write its corresponding degree fλ′

= fλ, and obtain

the following “Catalan triangle”:

1

↙ ↘
1 1

↓ ↙ ↓
2 1

↙ ↘ ↙ ↘
2 3 1

↓ ↙ ↓ ↙ ↓
5 4 1

↙ ↘ ↙ ↘ ↙ ↘
5 9 5 1

. . . . .

A Catalan Triangle.

In the Catalan triangle, all rightmost numbers are 1 and, like in the Fine

graph, all numbers are obtained by adding the incoming multiplicities. The

leftmost numbers are the Catalan numbers Cn. The sum of the numbers of the

r-th raw are the numbers S(2, 0; r) =
(

r
b r

2 c
)
. The numbers on the q-th diagonal

from North–East to South–West are the numbers f (n,q−1).
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